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In drug discovery and development, traditional assessment of human patients and
preclinical subjects occurs at limited time points in potentially stressful surroundings (i.e.,
the clinic or a test arena), which can impact data quality and welfare. However, recent
advances in remote digital monitoring technologies enable the assessment of human
patients and preclinical subjects across multiple time points in familiar surroundings.
The ability to monitor a patient throughout disease progression provides an opportunity
for more relevant and efficient diagnosis as well as improved assessment of drug efficacy
and safety. In preclinical in vivo animal models, these digital technologies allow for
continuous, longitudinal, and non-invasive monitoring in the home environment. This
manuscript provides an overview of digital monitoring technologies for use in preclinical
studies including their history and evolution, current engagement through use cases,
and impact of digital biomarkers (DBs) on drug discovery and the 3Rs. We also discuss
barriers to implementation and strategies to overcome them. Finally, we address data
consistency and technology standards from the perspective of technology providers,
end-users, and subject matter experts. Overall, this review establishes an improved
understanding of the value and implementation of digital biomarker (DB) technologies in
preclinical research.

Keywords: 3Rs (reduce replace refine), digital biomarkers, translation, preclinical, drug discovery and
development, home cage, rodents
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INTRODUCTION

Drug discovery and development is under tremendous pressure
to accelerate the production and delivery of novel, safe, and
effective therapies to patients, which depends on collaboration
among the pharmaceutical industry, academic collaborators,
contract research organizations, technology providers, and
regulatory agencies. Thus, the field is reimagining drug discovery
and development by leveraging digital transformation with
emerging technologies. Initial efforts in preclinical research
involved automating animal behavior observations with analog
devices in the 1980s (Donát, 1991), followed by extracting metrics
from videos in the early 1990s (Spruijt et al., 1992; Sams-
Dodd, 1995; Noldus et al., 2001). Automated systems have since
been commonly used to quantify rodent behavior in a wide
variety of test paradigms (Crawley, 2007; Carter and Shieh,
2015). These traditional behavioral measures are collected by
removing animals from their home cage and placing them in
temporary enclosures, which, along with even routine husbandry,
may affect behavioral and physiological parameters (Saibaba
et al., 1996; Balcombe et al., 2004; Schreuder et al., 2007; Meller
et al., 2011; Gerdin et al., 2012). Removal from the home cage
can also cause stress, negatively impacting animal welfare and
scientific data quality.

To mitigate these negative effects, technologies are being
developed to collect digital biomarkers (DBs) from animals
while in their home cage environment. Thus far, results from
these technologies confirm earlier findings that handling and
removing animals from home cages change their behavior
and physiology (Lim et al., 2019; Pernold et al., 2019; Baran
et al., 2020). For the purpose of this manuscript, home cage
and home environment are defined as cages and environment
where the animals are housed for the majority of their lifetime
while in the vivarium (see Box 1), whereas DB refers to data
collected continuously from unrestrained and un-instrumented
animals in the home cage environment. In this context,
un-instrumented may include animals with radio frequency
identification (RFID) chips injected subcutaneously but not
devices implanted surgically [National Research Council (US)
Committee for the Update of the Guide for the Care and Use
of Laboratory Animals, 2011]. Furthermore, this manuscript
focuses on scalable (ability to monitor hundreds to thousands of
animals in their home environment) and commercially available
technologies, with the exception of historical perspective where
other technologies are included.

Currently, the technology and use of DBs in a home cage
is emerging and is still in early stages of development and
implementation, with recent advances allowing for longitudinal
and scalable digital monitoring of rodents across a range of
disease models including neural, psychiatric, respiratory, and
oncology (Defensor et al., 2019; Baran et al., 2020, 2021;
Do et al., 2020; Golini et al., 2020; Hobson et al., 2020;
Shenk et al., 2020; Voikar and Gaburro, 2020; Grieco et al.,
2021). These emerging technologies provide an opportunity to
modernize animal assessment and refine how preclinical in vivo
data are collected, analyzed, and visualized. Furthermore, these
technologies have promising applications in efficacy and safety

studies by improving translation and accelerating the delivery of
better drug candidates into the clinic.

However, several challenges remain before these technologies
are routinely implemented in drug discovery and development.
Overcoming the challenges of onboarding and establishing
robust qualification packages built around specific contexts
of use (COU) is one of the highest priorities. To address
these challenges, a group of stakeholders came together under
the North American 3Rs Collaborative (NA3RsC) to establish
the Translational Digital Biomarkers Initiative1. This Initiative
is collaboration among pharmaceutical and biotechnology
companies, technology providers, and other subject matter
experts to improve understanding of the value and best practices
for the implementation of scalable DB technologies in research.
Its goal is to increase the adoption of translational DBs to
advance the 3Rs.

The Translational Digital Biomarkers Initiative collectively
defines a translational digital biomarker (TDB) as an objective,
quantifiable measure of physiological and behavioral response to
disease progression or therapeutic intervention that is collected
by means of digital monitoring technologies, including both
internal (e.g., injectable or ingestible) or external sensors (e.g.,
wearable, camera, or electromagnetic field detector), which are
clinically relevant and translate between preclinical studies and
the clinic. The TDB Initiative recognizes that these technologies
are in the early stage of development and still require validation,
characterization, qualification, and further evolution.

This manuscript provides an overview of TDB, including
current challenges, gaps, and onboarding strategies. We aim to
share end-user perspectives on evaluating and characterizing
digital biomarkers (DBs) to support drug discovery and
development, including describing likely COU where the
pharmaceutical industry will incorporate DBs. We offer further
insight into how these technologies will be applied in drug
discovery and development for long-term impact on science
and 3Rs. The intent of sharing this information is to expedite
the engagement and integration of DBs into drug discovery
and development.

EVOLUTION OF DIGITAL BIOMARKERS,
FROM SHORT-LASTING TESTS TO
LONGITUDINAL ASSESSMENT IN THE
HOME CAGE

Behavior
The evolution of automated measurement of rodent behavior
began in the 1980s, progressing along with new technology
(Figure 1). The first technologies to be used were photobeam
activity monitors and video trackers (Donát, 1991). Then, as
digital image processing and software-based video technologies
were introduced, they significantly increased the implementation
of DBs with bench top technologies (Spruijt et al., 1992). These
systems allowed for more accurate and complex measurements,

1www.na3rsc.org
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BOX 1 | Helpful definitions related to digital biomarkers.
Digital biomarker: data collected continuously from unrestrained and un-instrumented animals in their home cage environment. These animals should not have
undergone minor or major surgery with the exception of radio frequency identification (RFID) chips injected subcutaneously [National Research Council (US)
Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 2011].
Translational digital biomarker (TDB): an objective, quantifiable measure of physiological and/or behavioral response to disease progression or therapeutic
intervention that is collected by means of digital monitoring technologies, including both internal (e.g., injectable or ingestible) and external (e.g., wearable, camera,
or electromagnetic field detector) sensors, which is clinically relevant and translate between preclinical studies and the clinic.
Home cage or home environment: cages and environment where animals are housed for the majority of their lifetime in the vivarium.
Bench top cage or technology: cages and technology (experimental test environments) not designed for permanent housing but where animals are housed for a
short (from hours up to few days) period of time.
Scalable: ability to monitor hundreds to thousands of animals within a home environment.
Technology verification: ensuring, through demonstration of precision, reliability and reproducibility, that a device is measuring and storing data accurately.
Analytical validation: entails evaluation of data processing algorithms that convert technology-collected measurements into outputted metrics
(Goldsack et al., 2020).
Clinical validation: accomplished by demonstrating that technology adequately identifies, measures, or predicts a meaningful clinical, biological, physical,
functional state or experience in the specified (1) animal cohort and (2) context of use (Goldsack et al., 2020).

FIGURE 1 | Evolution of technologies generating digital biomarkers of rodent behavior and physiology. Each arrow extending over 2020 is a technology that is
currently available. Blue rectangles: hardware. Orange rectangles: software. ABR, automatic behavior recognition. Housing: systems that are designed for
permanent housing of rodents in the vivarium. Home cage: cages where the animals are housed majority of their lifetime in the vivarium. Bench top cage or
technology: cages and technology (experimental test environments) not designed for permanent housing but where the animals are housed for a short (from hours
up to few days) period of time.

such as indicating time spent in specific zones of interest, distance
traveled, velocity, acceleration, and social proximity (Sams-Dodd,
1995; Noldus et al., 2001; Spink et al., 2001).

In the present day, technology has progressed far beyond these
simple measures in a single plane. For example, video tracking
can even use machine learning to automatically classify specific
postures and behaviors, such as grooming, rearing, sniffing, and
walking, with the reliability of over 70% (on par with human
observers) (Jhuang et al., 2010; van Dam et al., 2013). Deep
learning for image processing also opens up exciting new avenues

for innovation in automated behavioral observation (Mathis
et al., 2018; Pereira et al., 2020), which is accelerated by animal-
related open-source deep learning frameworks, libraries, and data
sets (Serre, 2019; Mathis and Mathis, 2020; Mathis et al., 2020).
With automated measurements of rodent behavior continuously
improving, researchers have access to reliable and validated video
tracking systems that generate a wealth of digital behavioral
biomarkers. However, the majority of these systems require
animals to be removed from their home cage environment and
transferred into a test cage environment.
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Physiology
The evolution of automated measurement of rodent physiology
also began in the early 1980s. Until then, blood pressure
in rodents was measured with a cuff system (similar to
human blood pressure measurement) applied to the tail in an
anesthetized or restrained animal. However, in the 1990s, it was
shown that restraint alone can increase blood pressure, thereby
acting as a confounding variable (Bazil et al., 1993). To avoid this
confounding variable, the majority of rodent cardiovascular
studies are now performed on unrestrained, implanted
telemetrized animals, as recommended by the American
Cardiology Society (Anderson et al., 1999). These findings
and recommendations related to blood pressure led to the
development of additional technologies collecting physiological
data, such as electrocardiogram (ECG), electroencephalography
(EEG) and electromyography (EMG), blood pressure (BP),
and blood glucose (BG). The majority of these technologies
enable data collection from rodents housed in their home
cages, but currently they are unscalable (Stiedl et al., 1999;
Kramer and Kinter, 2003; Gaburro et al., 2011; Kuzdas et al.,
2013).

Science-Driven Need for Refinement and
Evolution of Animal Assessment
Technologies
The technologies described above that allow for the automated,
unrestrained measurement of behavior and physiology continue
to have an enormous impact on preclinical research. Many
traditional behavioral tests have proven utility and validity,
and have contributed much to today’s knowledge of the
regulation of locomotion and other behavioral endpoints, such as
anxiety-related behaviors. However, these traditional behavioral
and physiological tests have limitations, as they occur in a
dedicated testing apparatus during a short period of time [or
require invasive surgical manipulation for instrumentation (i.e.,
telemetry)] and most often with singly housed animals.

There are animal welfare and scientific validity issues related
to assessments occurring in dedicated testing apparatuses. For
example, because of their limited time period, relevant dynamic
and circadian processes cannot be included. Furthermore, true
baseline information can be difficult to obtain because of both
the novelty of entering a testing apparatus and the physiological
changes that result from handling stress. These factors can
obscure the behavioral phenotype one seeks to understand
(Chesler et al., 2002; de Visser et al., 2006; Pernold et al.,
2021). In fact, even in a home cage, handling mice for routine
husbandry procedures (e.g., weighing or cage change) can
increase the hormone corticosterone and daytime activity for at
least 24 h (Rasmussen et al., 2011; Pernold et al., 2019). Finally,
different experimenters and/or experimental conditions (e.g.,
environment before, during, and after experiment) can also play a
pivotal role in data reproducibility (Pernold et al., 2019; Richter,
2020). Even in human and veterinary medicine, the presence of
an experimenter can induce experimental confounds, i.e., “white
coat effect” (Mattoo et al., 1976; Lavie et al., 1988; Stanek and
Bruckner, 1989; Bodey and Michell, 1997; Pioli et al., 2018).

Single-housing of animals is also a potential issue for animal
welfare and experimental validity. Single-housing alters animal
behavior, limits the expression of natural social behaviors (Kappel
et al., 2017; Arakawa, 2018; Manouze et al., 2019), and changes
physiological parameters (Kerr et al., 1997; D’Amato et al.,
2001; Van Loo et al., 2007; Hermes et al., 2009; Pham et al.,
2010; Haj-Mirzaian et al., 2019). Furthermore, The Guide for
the Care and Use of Laboratory Animals (The Guide) states
that social animals, such as mice and rats, should be housed in
stable pairs or groups of compatible individuals unless single-
housing is required for scientific reasons or social incompatibility
[National Research Council (US) Committee for the Update of
the Guide for the Care and Use of Laboratory Animals, 2011].
Therefore, any data collected from singly housed animals should
be carefully scrutinized.

Instead of taking an animal to an experiment, experimenters
could instead refine testing by bringing the experiment to the
home environment of the animal to minimize the confounding
variables and animal welfare concerns mentioned above (Richter
et al., 2010; Voelkl et al., 2018, 2020). Assessing animals in their
home environment allows for long-term continuous observation,
with establishment of baseline activity followed by programmed
interventions (Tang et al., 2002; Kas and Van Ree, 2004). Home
cage assessment requires minimal human intervention, which
reduces handling stress and experimental bias. It also increases
operational efficiency by reducing time required for humans to
make observations (Tecott and Nestler, 2004) and for animals to
become acclimated to a novel apparatus. By designing a home
cage environment as an automated, modular system that contains
different stimuli (e.g., food, drink, light and sound stimuli, novel
objects) and enrichment (shelter, play objects), a broad range
of behaviors, as a result of interacting motivational systems,
can be studied (de Visser et al., 2006; Voikar and Gaburro,
2020). It allows for the distinction of novelty-induced and
baseline behaviors and offers the opportunity to study circadian
rhythmicity and sleep alterations.

In order to turn a home cage into an automated behavioral
and physiological assessment system, a variety of sensors
[e.g., video camera, RFID and electromagnetic field (EMF)
sensing boards, and vibration sensors] must be added to the
home cage. Digital rodent longitudinal monitoring technologies,
scalable and unscalable, have been described previously by
Voikar and Gaburro (2020). This manuscript complements the
Voikar and Gaburro (2020) review by providing a questionnaire
with suggestions of additional descriptive information to be
collected from technology providers (Table 1). Collectively,
this information will assist end-user with selection, onboarding
and resource planning when considering DBs, data accessibility
and visualization.

Potential 3Rs Impact of Digital
Biomarkers
The internationally accepted principles of the 3Rs in
preclinical research were first published in 1959 (Russell
and Burch, 1959). Since then, they have become internationally
accepted principles of humane and ethical science. DBs
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TABLE 1 | Questionnaire with suggestions of descriptive information to be collected from technology providers to assist end users with selection, onboarding, and
resource planning; (A) general overview and data accessibility and visualization, and (B) digital biomarkers.

Company A Company B Company C

General information

Technology type (EMF, RFID, Telemetry, Wearable, Video, Other)

Number of video cameras per cage/system, if applicable

Location of cameras, if applicable (Side, Top, Other)

Data storage type (Local, Cloud, Hybrid)

Type of data (Image, Numerical, Video)

Amount of data per one system or cage per 24-h period (GB)

Species

Implant size (mm), if applicable

Animals per one system or cage (specify species)

Home cage compatible

Rack compatible

Rack based

Scalability; Low (1–80 cages), Medium (81–180 cages), High (181 and more cages)

General data accessibility/visualization

Raw data accessibility

Web browser capability (direct, without app)

Application capability (application has to be downloaded?)

Availability of data to the user (in minutes); (Delay b/w viewing animals live in vivarium seeing automatically extracted
biomarkers through your platform?)

Individual animal data when socially housed

Group housed

Automated dashboard data comparison options (this excludes manual comparisons of data)

Individual

Group

Strain

Sex

Light cycle (Day vs. Night)

Activity distribution

Time of the day/week (min,h,day)

Percent change given parameter vs. baseline

Descriptive stats of parameters (Mean, Avg, STDEV, SEM)

Enviromental factor (%Rh, T, Light, Humans, Vibration)

Zooming into areas of interest on data dashboard

Resolution options (seconds, minutes, hours) (View data every 30 s vs. 5 min)

Tasks on subject charts (include manual observations)

Data analytics (Locally based, Cloud based)

Company A Company B Company C

HA Health Alert Health alert functionality

Physiology Physiology Temperature

Respiration

Blood Pressure

Heart Rate

Behavioral Consumption Water (time spent)

Food (time spent)

Water (actual

Food (actual)

Motion Velocity

Distance

Total Movement

Direction

(Continued)
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TABLE 1 | (Continued)

Company A Company B Company C

Activity – General Climbing

Rearing

Foraging

Self-Grooming

Allo-grooming

Scratching

Writhering

Jumping

Sleep

Activitiy - Aggression Pinning

Pouncing

Sliding

Bumping

Dominant Grooming

Biting

Running Wheel Related Behaviors Time on wheel

Velocity

Distance

Direction of wheel rotation

Frequency & duration of bouts

Consistency of wheel velocity

Multiple mice on wheel

Cage Zones Time spend in zone

Speed in zone

Number/duration of boughts in zone

Transitions between zones

Social Trajectory Analysis Distance between animals/social distance

Time spent together

Following behavior

Exploration index

Thigmoaxic behavior

Other Convulsion

Seizure

Tremur

Circadian Rhythm

have the potential to support the reduction and refinement
principles of the 3Rs.

There are several ways that DBs can support refinement. DBs
can be used to assess the effectiveness of efforts to improve animal
welfare by decreasing pain and distress, such as administration of
postoperative analgesia (Roughan et al., 2009). They could also
allow researchers to more quickly and accurately detect and track
either experimentally induced or naturally occurring diseases
and ailments. Presumably, they could even detect subclinical
(mild) disease and cases where the animals may be distressed
but not showing visible symptoms (Lim et al., 2017; Baran
et al., 2020, 2021). They could even more accurately predict
end of life. Therefore, this could allow for earlier intervention,
reducing animal pain and discomfort, morbidity, and mortality.
These biomarkers also have the potential to replace traditional
measurements, such as blood collection, that require handling
and resulting in pain and distress, allowing for further refinement

of procedures (Steele et al., 2007). They could even be used
to evaluate effective methods to promote positive welfare by
promoting positive states (Yeates and Main, 2008; Mellor, 2012).

Although there are many examples of using DBs to refine
animal studies, we will outline two particularly clear examples.
The first example is where an automated home cage monitoring
system was used to evaluate the applicability and severity of
a frequently used acute colitis model (Zentrich et al., 2021).
Using this system, researchers were able to closely examine the
progression of colitis longitudinally in a contactless, objective,
continuous, and non-invasive manner. Reduced activity, a sign
of colitis severity, was observed with gold standard clinical
parameters and detected with DB. The researchers concluded
that such a system can be used for large-scale objective severity
assessments to refine both animal welfare and scientific quality.

A second example of using DBs to refine animal studies
is via the Cognition Wall paradigm, which is used to test
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discrimination and reversal learning in mice. The field of
Alzheimer’s research can be complex and challenging to
translate to humans while simultaneously being time-consuming
and stressful to the animals. However, the Cognition Wall
paradigm can be implemented to reduce time and animal stress.
This paradigm can be implemented in a specially designed
experimental cage in which the animals spend several weeks.
This cage is equipped with a plastic insert with 3 holes, an
overhead video camera, a sucrose pellet dispenser, an overhead
video camera, and a software script. Mice learn that they will
receive a sucrose pellet when they move through the holes in
a certain pattern. Sucrose pellets are delivered automatically via
the cage equipment and software script (Heldring, 2019; Grieco
et al., 2021). Wild-type mice learn this very quickly: at 12 weeks
of age, they reach 80% correct entries within 6 h (i.e., within a
single night). At the same age, APP/PS1 mice need 50% more
trials to reach the same criterion. The learning deficit can be
rescued by administration of the BACE1 inhibitor LY2886721
(Heldring, 2019). This study demonstrated that with the use of
specific behavioral biomarkers, Alzheimer indicators (cognitive
defects) can be detected at an early stage, even before the onset
of plaque pathology (Aß deposition) in the brain, and much
earlier than the age at which learning impairment is detected in
the Morris water maze (9–12 months). This implies a three-fold
reduction in the time the mice have to be kept in the vivarium.
Furthermore, the Cognition Wall test is less stressful than the
Morris water swim task.

There are also several ways that DBs can support reduction
(Vollert et al., 2020; Iman et al., 2021; Zentrich et al., 2021).
In-person animal assessments, including manual score sheets,
are an important issue, as they are subjective and introduce
inter-assessor variability with potentially serious implications for
reported outcomes. Objective biomarkers address this challenge
and can enable stronger repeated-measure experimental designs
with more sensitive detection of variation induced by treatment.
Repeated measures can reduce the need for multiple satellite
groups of animals that are sacrificed at various points for
histopathological assessment of disease progression (Baran et al.,
2020). Furthermore, these biomarkers could mitigate variability
among human raters, thereby allowing greater precision. Home
cage behaviors that predict disease onset (Steele et al., 2007)
could also guide researchers to more physiologically relevant
and robust endpoints that could inform planning of future
clinical stage trials. This knowledge, in turn, allows for better
experimental study designs and promotes collaboration and
coordination among scientists. These qualities of method
development, coordination, and planning of animal experiments
have been shown to be the three main qualities that contribute
to the effective application of the principles of the 3Rs
(Törnqvist et al., 2014).

LIMITATIONS AND BARRIERS TO
IMPLEMENTATION

Despite the potential value of translational DBs to science and
the 3Rs, there are clear barriers to implementation that need

to be addressed. Here, we describe operational, scientific, and
cultural barriers. Some of these barriers are not unique to DBs,
such as fear of change; therefore, we will not discuss them
extensively. However, we will discuss the ones unique to DBs,
such as digital infrastructure, in greater details. Overall, early and
careful consideration of these topics will help ensure successful
implementation of DB technologies.

Operational
Information Technology Infrastructure
Technologies that make DBs possible are composed of hardware
and digital platforms.

Digital platforms can be on-premises or cloud-based as
Software as a Service (SaaS). For on-premises infrastructure
(private cloud) or Infrastructure as a Service (IaaS, public cloud,
such as Amazon Web Services (AWS) or Google Cloud Platform
(GCP), infrastructure needs are handled by an institution team.
For SaaS, infrastructure needs are handled by a digital technology
vendor. Each option comes with associated benefits and costs.
On-premises technologies rely heavily on internal information
technology (IT) skills and support. As companies drive toward
lean and more efficient operational models while increasing
digital engagement, competition for internal IT resources can be
fierce. After obtaining this support, it can also be challenging
to maintain the required level of IT support for DBs. SaaS
technologies, while offering scalability and flexibility, require
digital infrastructure to allow for data flow and potentially
significant bandwidth between hardware components and the
cloud (especially for video data).

The infrastructure should reflect expectations and business
needs. That is, most would expect quick access to recently
measured data. However, large datasets require network transfer
and processing. To mitigate this issue, an ideal system would
make some information instantly available for monitoring, while
full large datasets would be available later for further analysis after
processing. As some of these systems create massive datasets, and
some enable near real-time alerting and intervention, or both,
it is especially important to consider connectivity reliability and
how systems may alert users when connectivity issues occur, such
as when systems stop working, for example, if a cloud-based
system being used by a company to collect study data is suddenly
disconnected because a network team supporting the network
security of the company ran a security certificate update, thus
blocking data uploading to the cloud.

While these issues may not be fully preventable, it is necessary
to consider real-time power backups, local data storage, and data
storage backup plan. To reduce lost data and resources, vendors
and end users need an understanding of how to detect when
issues arise and have appropriate channels for communicating
and addressing issues while using local data storage.

Additionally, edge computing can be beneficial, such that
image processing is performed close to the sensor and only
extracted metrics are sent over the network. For example, Nvidia
Jetson Nano embedded inside an instrumented cage can run
image processing software, or AWS Panorama Appliance can
perform machine learning in the data acquisition location. The
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goal is to provide centralized control and decentralized execution,
the same environment to develop, connect, manage, secure with
the same tool from the edge to the cloud. Same services are
available with reduced latency and lower cost. Multiple solutions
are available depending on business needs, but the architecture
needs to be part of the planning phase before deploying these
digital technologies. One can have multiple sites for instruments
(internal or external to the company) and leverage metro
center edge locations (local data centers) to decrease latency
concerns, or even run local sensors or computers to perform
advanced analysis on premises without transferring the entire
data over the network.

Cybersecurity
Independently of motives (intellectual property, client and
patient data, extremists), life science organizations are
targeted by cyberattacks (Terry, 2018; Rajagopal, 2019). It
is vital for institutions to secure their data while making
them available. Scientists must be able to access and share
information with their peers and collaborators. However,
preventing unauthorized access to data and systems while
enabling science is a major challenge for organizations.
Leveraging cloud technology to move quickly increases
the need for cybersecurity awareness and dedicated efforts.
A large amount of sensitive data is stored in the cloud and
third-party-hosted environments.

Multiple strategies have to be implemented to counteract
cybersecurity risks. It starts with financial and strategic
investments from the leadership with a focused role, such
as a chief information security officer position. The IT and
security strategy needs to include roadmap items, such as data
encryption, identity and access management, as well as risk
and compliance (Desai et al., 2019). Standards are available
in the industry to guide these strategies (National Institute of
Standards and Technology, 2019), but each organization needs
to adapt to its needs.

Risk framework and mitigation are critical for the
infrastructure and data owners, and for working with third
parties, including IT providers, data collection systems, external
contractors. Reliance on systems and data, which is not under
one’s control, makes it potentially more susceptible to a cyber
event. Most organizations work with SaaS systems, cloud
providers, software vendors, and external collaborators. It is the
responsibility of the data owner to ensure that security standards
and processes are in place to mitigate risks. Data integrity is
critical for research, and all parties must validate the data. It
is especially true when relying on additional network entry
points, such as Internet of Things (IoT) devices, sensors, or
wearable. These products require a network access that must be
constantly monitored, making it difficult for IT to keep up with
demand. Organizations are forced to choose between spreading
sensitive data to third parties, evaluate the risks or lose velocity
to implement scientific solutions.

Life science institutions cannot rely exclusively on technical
solutions to address cybersecurity challenges. Developing a clear
plan and risk mitigation strategy ahead of time can dramatically
reduce the cost of an event when it occurs. It is essential to ensure

appropriate resources to make sure that systems are secure and
supported, and that data are accessible. All systems should be
vetted through an organization’s business technology solutions
group to ensure they match institutional cybersecurity and
compliance policies as well as industry standards. It is important
to embed operational resiliency into everyday activity: implement
strong authentication to sensitive information and manage staff
and third-party access, deploy specific security capabilities for
secure production IT, ensure data integrity, and provide personal
trusted identity to researchers with private keys (PKI) solutions.

Data Integration
Data integration, including and beyond integration (and
synchronization) of behavioral and physiological data, is another
challenge. Most companies already have a procurement and
BioRegistry system in place to assign unique identifiers to animals
and associated metadata. These data must be mapped to new
translational DB data for data integrity and sample tracking. For
example, integrating behavioral data captured in digital cages
with physiological data measured at a different time requires
additional engineering work.

Data Quantity and Flow
As discussed, some of these emerging technologies can
generate a great deal of data depending on their architecture,
signal processing, and data reduction workflows. This requires
development of data storage strategy and retention policies.
Data storage strategy should consider data format, metadata,
and access frequency and timing. The flow of data should be
automated, requiring minimal manual input to reduce data entry
errors. Long-term raw video data storage can require significant
financial support that often deters organizations from keeping
this type of data. However, in the spirit of the 3Rs principles, it
should be considered, since historical raw video data can be used
to develop and validate algorithms to extract novel DBs.

Analysis and Interpretation
Analysis of continuous 24/7 data for multiple cages and multiple
days is challenging, and different approaches have been proposed.
Temporal data can be aggregated into packets (5 min, 1 h, etc.)
linked to circadian time, and the same data (such as behavior
counts) may also be filtered depending on other factors, such
as the injection time and pharmacokinetics/pharmacodynamics
(PK/PD) profile of a specific candidate drug, or whether the
biomarker to be evaluated is evident mostly during the active
phase (nighttime) of animals. Pilot studies are useful to optimize
and define settings for comparison. Once these are defined,
baseline activity recordings allow for the parameters of a subject
to serve as its own control. Data may also be normalized in
the case of uneven animal number per cage; however, this
poses additional complications, particularly when trios, pairs,
and singly housed rodent environments result in different
opportunities for behavior, hierarchies, and social effects. This
may be addressed by normalizing data against a 1-to-2-week
baseline in which a parameter can be expressed as % change
(increase or decrease of the activity).
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Behavioral and physiological biomarkers can also be used
in experimental planning to balance groups of animals based
on expected behaviors. For example, baseline data could
demonstrate that some subjects are hyperactive or hypoactive,
which can be considered in randomization or allow for the
removal of those individuals from consideration in an experiment
if activity measures are already between 1 or 2 standard deviations
(SDs) outside of average activity.

Descriptive statistics for continuous time-associated
biomarkers are complex, and data obtained from these systems
may be incompatible with classic parametric t-tests or analyses
of variance. Consulting with an experienced statistician prior
to experimental onset is recommended. In many cases, non-
parametric tools are able to handle non-continuous, complex
data better (Voikar and Gaburro, 2020). Interpretation of results
can also be challenging, when animals are socially housed,
because of signal crossover, loss of signal, or inability of a system
to collect continuous data from individual animals.

Operational and Scientific
Non-information Technology Resource Requirements
As different types of technologies and systems exist, scalability,
operational footprint, and resource requirements (i.e.,
compatibility with standard cage and rack designs and additional
space requirements) are key points to discuss with internal teams
early in the onboarding process. Other considerations should
include staff training to operate and use new systems plus the
amount of time that is required to set up and incorporate new
systems while maintaining current systems. Compatibility with
standard cleaning and decontamination process and capabilities
must be considered, since these technologies include electronics.
Resource requirements for reusable vs. recyclable caging could
also be considered. If cage enrichments are used as a part of a DB
recording (i.e., running wheels), the operational time and cost
of using such enrichments should be included in the analysis of
resource requirements.

Data Science
Creating valuable insights and increasing scientific and
operational value from big data collected from scalable DB
technologies require data science specialization with computer
vision, data processing, and advanced statistical modeling
including deep learning expertise (Figure 2). These types of
resources are typically not dedicated to projects involving these
emerging technologies. An additional challenge is access to
data scientists with both preclinical research knowledge and
expertise in computer vision. Data scientists with this expertise
will be able to turn data more effectively from these advanced
systems into actionable insights for preclinical project teams and
successfully drive collaborations with external systems and data
providers. It is sometimes expected that data scientists work on
collected data after an experiment is completed. However, data
scientists should be involved from the beginning to work on the
design of the experiments, and build the data architecture and
required analysis pipeline to validate a scientific hypothesis. This
prerequisite adds to the difficulty of enrolling dedicated data
scientists to such projects.

FIGURE 2 | Data Science is an interdisciplinary field focused on extracting
knowledge from data. It requires a combination of skills, mainly statistics and
mathematics, information technology understanding, and domain knowledge.

Time From the Decision to Engage to Running
Studies
This process within the pharmaceutical industry can take
several months (Figure 3) and can be further prolonged if an
organization is planning on utilizing data as part of regulatory
submissions. It is important to share these timelines with all
stakeholders, so that definitive projections can be developed to
allow for accurate support and delivery.

Technology Verification and Validation
Technology verification ensures that a device is measuring and
storing data accurately. This process includes demonstration of
precision, reliability, and reproducibility, and, most often, is
completed by a technology manufacturer. Validation is composed
of analytical and clinical components (Goldsack et al., 2020).

Analytical validation entails the evaluation of data processing
algorithms that convert technology-collected measurements into
outputted metrics. This part of validation is also commonly
performed by technology providers. Until recently, assurance
from technology providers regarding verification and validation
were taken at face value. However, as the technology is maturing,
end users are requesting verification and validation data and
insight into algorithms. Some institutions are even developing
technology agnostic validation platforms (Syllable Use Cases,
2021). These aspects can be challenging, because verification
process and analytical validation portions are often proprietary.

Clinical validation is accomplished by demonstrating that
technology adequately identifies, measures, or predicts a
meaningful clinical, biological, physical, functional state or
experience in both the specified animal cohort and context of
use (Goldsack et al., 2020). When gold standard measurement
is available, head-to-head comparison should be conducted
to determine sensitivity and specificity. This validation is
time-consuming, and during these early stages of technology,
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FIGURE 3 | Example timeline for a pharmaceutical company from decision to engage with a scalable digital biomarker technology to running a first study.

TABLE 2 | Barriers and solutions to implementation of scalable digital biomarker technologies that end users can implement.

Barrier to implementation Possible Solutions

Information Technology (IT) and
infrastructure to support technologies.

Engage with IT, obtain infrastructure white papers or similar documentation from the technology provider and perform
gap analysis of internal infrastructure early in the process.

Cybersecurity Engage with cybersecurity team and obtain data flow white papers or similar documentation from the technology
provider as early as possible.

Non-IT resource requirements Involve both vivarium operations leadership and scientists in the selection and planning of new technology, and vivarium
staff in the implementation of new systems. Invest in training in the operation of such systems.

Communication between technology
provider and end-user

Identify main point of contact for technology provider and for end-user. Prior to onboarding develop a project plan,
including deliverables and timelines.

Consideration and/or understanding of
technology impact on in vivo model or
biology

Collate relevant publications demonstrating the benefits of technologies and present to the team.
Identify publications with specific performance data (heat load, near-IR radiation, ultrasound) to inform decision making.

Consideration and/or understanding of
changes in animal housing on in vivo
model or biology

Identify publications and performance data addressing impact of single housing, presence of running wheel, decreased
or absence of nesting material.
Assess effects through pilot studies, build variability into study design.
Meet with colleagues or other end-users to discuss costs, benefits, and impacts to their model.

Social housing and data gaps Learn if there is loss of data when animals are group housed and if individual animal data is available when animals are
group housed.
Engage data scientist to assist with data analysis.
Engage with technology provider to identify most appropriate per cage animal density.

Data quantity
(e.g., one hour of High Definition video
is ˜39 Gigabytes (frame and codec
depending), on a rack with 50 cages it
is 1.95 Terabytes

Map out data flow and develop data storage infrastructure, maintenance, access strategy including data retention
policy. Identify capability to visualize, including ability to making comparisons across large and complex sets of data.

Time from the decision to engage to
running studies

Map out realistic timeline and share with all stakeholders.

Technology verification and validation Establish guidelines for how novel digital biomarker technology should be validated; as an example, methodologies to
compare digital measures to more traditional measures can ease the uptake of emerging technologies by scientists.

Study design Involve dedicated data scientists upfront to improve study design taking into account n number (cage or animals,
depending on the technology) and relative power calculation for the outputs to be expected.

Regulatory application of a novel
biomarker

Engage health authorities early to identify COU and qualification criteria and co-develop publications.

Fear of change Educating teams about digital monitoring technologies, 3Rs benefits, and study approaches with an understanding that
some approaches might fail.

Collaboration Internally, establish mechanism or group to aggregate experiences of studies with these technologies such as
Knowledge Exchanges.
Industry wide, establish precompetitive groups with various stakeholders such as the Translational Digital Biomarkers
Initiative within NA3RsC to share their experiences and serve as a knowledge repository with a goal of establishing more
universal approaches to these emerging technologies.

maturation often needs to be performed by end users. This
challenge provides another justification for an internal data

scientist who could successfully drive collaborations with
external systems and data providers, some of which provide
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TABLE 3 | Suggested list of pragmatic information end users should consider prior to onboarding of scalable monitoring digital technologies.

- Initial set up timeline
- Budgets and timing for initial trials to acceptance
- Capacity
- Scalability
- Maintenance required
- Space requirements
- Equipment requirements
- Digital platform requirements
- Level of training and expertise required for hardware and

digital platform
- Cleaning and decontamination feasibility
- Technology providers willingness to engage in trials and

future capability build out
- Institutional commitment
- Degree of applicability and value across the enterprise
- Use of comparable measures in clinical setting
- Depreciation considerations

- Data
◦ Collection
◦ Storage
◦ Management
◦ Integration
◦ Curation
◦ Visualization
◦ Access
◦ Data analysis including ability to apply

machine learning and AI
� Individual
� Multiple

◦ Historical
- Model (algorithm)

◦ Development
◦ Deployment
◦ Maintenance

- End-user
◦ Mobility
◦ Ease of use

- Facility Infrastructure
◦ Access, location and number of

� power outlets
� internet ports

- Access Infrastructure
◦ Network speed

� Hardwired
� Wi-Fi

◦ Network access
◦ Location
◦ Hardwired vs. Wi-Fi

- Hardware access
◦ In facility
◦ Outside of facility

- Hosting
◦ On-premises
◦ Cloud

� Private
� Public
� Hybrid

poorly validated black box algorithms. Robust assessment
of reliability, reproducibility, and usability (user experience)
should be performed.

Scientific
Consideration and/or Understanding of Technology
Impact
Cage Enhancements
In these early stages, the full impact of these technologies
on models is not well understood. In the same light, if cage
enhancements (i.e., running wheel) are performed, the impact
on model development and study design should be balanced
with potential outcomes. For example, running wheel activity
as a critical marker of quality of life versus the impact of
exercise on metabolism, immune function, behavior, and the
standard model (de Visser et al., 2005; Devisser et al., 2007).
While change in model outcomes may be considered a barrier
to implementation, it could also lead to a more biologically
relevant or predictive model. It is crucial to be aware of these
potential confounding factors. Current published literature on
running wheel behavior is inconclusive, and there seems to
be a varying degree to which voluntary exercise affects home
cage behavior that might impact disease models (Sherwin, 1998;
de Visser et al., 2005; Devisser et al., 2007). This raises an
interesting question about introducing inherent variability into
our preclinical models. Perhaps a model that provides half of
the animal’s access to exercise provides a more clinically relevant
model, considering that not all human patients have the same
activity levels, housing, or diet (Richter et al., 2010). It can be
challenging to accurately translate the use of the running wheel
and what that biomarker reflects in addition to wheel activity.
However, as a single traditional measure is not sufficient on its
own to interpret, same is applicable to DBs.

Cage Requirements
Other considerations include how standard housing and optimal
welfare may be challenged or changed by system requirements.
For instance, some systems may require single housing or
modified enrichment (decreased or no nesting material) to enable
recording of animal behavior and/or obtaining individual animal
data. So not only does this require ethical consideration of
the impact on animal welfare but also of the potential impact
on study outcomes.

Health Alarms
Since selected technologies have the ability to send out health
alarms, it is necessary to consider how this information will be
interpreted and potentially acted on, for example, if a veterinary
technician comes to a site and intervenes if a health alarm is
received in the middle of the night.

Understanding Measurements and Associated
Metadata
As with any assessment, it should be considered and understood
what is being measured, for example, when a scientist requests to
assess the sleep cycle, activity, and/or motion of an animal, these
cover a broad range of possible measures. Sleep cycle assessment
could include time to fall asleep, time to wake up, total sleep
time, time in and outside of nest, and group and individual
sleep measurements. Activity assessment could include local
or moving exploration, eating, drinking, standing, rearing, or
grooming, and motion could include velocity, distance, total
movement, direction, stride characteristics (count, duration,
and cadence), and gait characteristics. Understanding what
assessment is being requested and knowing what is actually
being measured will assist with accurate data interpretation and
evolution of technology.
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FIGURE 4 | Value propositions for translational digital biomarkers within drug discovery and development.

One Size Fits All
When looking for solutions, such as digital solutions, initial
inclination is to identify a solution that can be broadly used.
This leads to high expectations and pilots designed with broad
applicability. This approach to these emerging technologies is
challenging, as they should be piloted with a COU design during
their early development and engagement. Since each technology
and measurement offers can be very different (Tables 1–3),
technology comparison and selection, without COU in mind, can
lead to engagement with an incorrect system.

Study Design
The way our models are set up and how we run our studies
need to be carefully designed with these systems. See Practical
Strategies for Implementation for study design considerations.

Cultural
Fear of Change
Fear of taking risk, technology failure, and stepping outside of
traditional and well-established processes are common barriers
to implementing new technologies.

Collaboration
Initial engagement with emerging technologies often happens
within one group that later learns that other groups are interested
or are working with similar technology. Working in functional
and departmental silos leads to duplicative efforts. It makes it

challenging to form feedback that makes it difficult for technology
providers to act on a single view of end users.

As scalable DB technologies evolve and their adaption
increases, the implementation pathway of this new
approach to data collection will become more defined
and robust. Since we are not there yet, here, we describe
practical examples of impact and strategies for adaptation
and considerations how end users can implement these
emerging technologies.

ADDRESSING LIMITATIONS AND
BARRIERS, PRACTICAL STRATEGIES
FOR IMPLEMENTATION

There are a variety of ways to mitigate the challenges discussed
above. However, we recommend particular questions and
approaches at each step in the implementation process. There
are also several published studies that can be used as guides to
enable faster validation and qualification of studies using DBs.
Overall, any study conducted must follow standard scientific
practices while including additional considerations to ensure
high-quality DB data.

Step 1
For highest impact, identify studies in which traditional study
measures do not meet scientific or welfare needs. DBs have been
explored as a method to overcome a variety of challenges with
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FIGURE 5 | Scalable digital biomarker technologies present an opportunity to digitize the collection of traditional biomarkers and measure novel digital biomarkers
(Wang et al., 2016).

FIGURE 6 | Multiple measurements collected continuously and remotely within animals’ home environment can provide a holistic view of an in vivo model including
objective assessment of disease development and burden.

traditional study measures. The following are examples of current
problems that could be addressed using translational DBs.

• Measures that are not predictive or reproducible between
studies/labs, and do not translate to clinical outcomes.

• Measures that require extensive training or large number
of animals per group for statistical significance, or require
animals to be in significant pain/distress to measure
significant differences between groups.

• Longitudinal disease tracking, especially in diseases with
variable onset and rates of disease progression.

• Models with unexpected mortality (e.g., health that declines
rapidly without obvious warning signs or so slowly changes
is difficult to assess).

• Measures that are sensitive to the emotional state of animals
and change with disturbance.

• Situations where modest therapeutic improvement would
be clinically relevant, but current measures are not sensitive
enough to detect complete rescue.

• Models where baseline animal behavior/physiology can
impact disease induction or variability.
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Step 2
Run a pilot study using a traditional design to collect
DBs alongside traditional measures while making minor
modifications to account for potential confounding effects of
husbandry and study procedures. Regardless of whether an
animal model is familiar or new, plan to run an initial pilot study
using a traditional study design. A traditional design must include
a control group and a disease group, traditional measurements
(e.g., body weights, joint measurements, histology, etc.), and be
properly powered to enable statistical significance testing for
traditional measurements. By running a traditional study first,
scientists are able to both confirm expected study outcomes
and begin to explore the ability of DBs to solve pre-identified
scientific needs.

As outlined before, routine husbandry (e.g., cage change) and
study procedures (e.g., blood draws) can have a significant impact
on animals, and can last for multiple days (Rasmussen et al.,
2011; Lim et al., 2019; Pernold et al., 2019; Baran et al., 2021).
In designing a “traditional” study, it is important to modify the
timing of procedures to consider these potential confounding
effects. Identify all procedures that will involve human-animal
interactions and identify a time to conduct the procedure that will
not overlap with key data collection time points. For example,
in the cuprizone study described in Lim et al. (2019), it would
have been prudent to schedule cage change 4 days earlier to
avoid washing out of the signal associated with remyelination.
Given the potential confounding effects of procedures, be sure
that all animals are exposed to the same study procedures
at the same time.

Finally, if a study design calls for induction of disease
on healthy animals (e.g., paraquat lung injury, peripheral
neuropathy, etc.), plan to collect > 6 days of TDB data to use as a
baseline for randomization the day prior to disease induction. It
is recommended that scientists perform stratified randomization,
a strategy that allows researchers to control and balance animals
in groups based on key study measures, in this case TDB.

Step 3
Analyze pilot study data to uncover the potential value of TDB.
A number of analysis strategies can be used to determine the
added value of TDB. The following questions can help guide
exploration. Do TDBs enable new insights into a disease model?
For example, in a paraquat model of lung injury, digitally
collected breathing rates enabled tracking of disease progression
and improvement with therapeutic bardoxolone (Baran et al.,
2020). Do DBs track with expected disease progression? If
the goal is to eventually replace a traditional study measure,
looking at correlations between traditional measures and TDB
may be helpful. For example, in ALS mice, digitally collected
rest disturbance indexes are highly correlated with grid hanging
and body weight (Golini et al., 2020). Are DBs more consistent
than traditional measures? Some study measures that rely on
manual collection by an experimenter are more susceptible
to inter-experimenter variability, such as joint thickness in
arthritic animals or tumor volume in oncology studies. Lim
et al. (2017) demonstrated that a DB can be created that more

accurately measures disease in a rat model of rheumatoid arthritis
than standard joint measurements. Be sure to take note of
behavioral responses immediately surrounding husbandry and
study procedures for confounding effects on data interpretation
as well as potential insight into phenotypes. Often, TDB can
provide an additional layer of information that can help better
interpret more traditional study measures. During this review,
you may uncover unexpected challenges with your pilot study
design. If necessary, plan to run a follow-up study.

Step 4
If pilot study data suggest TDB may be of value, run a follow-
up complete study to verify reproducibility. At this point,
preliminary data may suggest that TDB can provide you with
complementary or, perhaps, more meaningful data. To be
valuable, it will be necessary to show that these data can be
reproducibly obtained from multiple studies. Conduct a follow-
up study using the exact same study design (including procedure
schedule), but in addition to the control and disease groups,
it is ideal to include one or more therapeutics with known
efficacy. This design allows scientists to both validate the ability to
reproduce TDB results and assess the ability of a known therapy
to move a TDB. Note that to ensure reproducibility, be sure to use
the same statistical strategy to analyze both studies.

Step 5 (Optional)
If collaborations are anticipated, ask a collaborator to replicate
your findings. The ability to replicate findings across highly
variable laboratory settings will further serve to confirm the
reproducibility of TDB.

ADDRESSING LIMITATIONS AND
BARRIERS

Engagement with scalable DB technologies requires interaction
across multiple areas of expertise. Driving engagement and
obtaining support require the ability to communicate potential
value across a variety of stakeholders. Here, we compiled a
list of value propositions that can be used when presenting
these technologies to various stakeholders (Figure 4). We
also list barriers to implementation and possible solutions
(Table 2). Finally, we compile a list of topics and questions
that should be considered when onboarding these emerging
technologies (Table 3).

CONCLUSION

The digital age has paved the way to automate and objectively
measure animal behavior and physiology. As more knowledge
is gained of biological systems, there are more possibilities to
digitalize aspects of animal health, function, and physiology,
and explore therapy guidance and disease progression. Recent
advances in scalable DB technologies have the potential to
improve assessment of safety and efficacy by reducing variability
while also increasing precision and sensitivity. This is because
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these assessments are objective (not impacted by perceptual
biases), have high resolution (collected continuously), and
realistic (collected within the home environment of animals).

Scalable DB technologies present an opportunity to capture
meaningful, objective data leading to actionable insight into
animal welfare, animal tracking, study design optimization,
and control on sources of variations (Figure 4). These
technologies present an opportunity to measure novel DBs and
digitize existing biomarkers (Figure 5). Furthermore, continuous
monitoring of animals within their home environment enables
a holistic view of an animal instead of the snapshot received
from traditional data (Figure 6). Furthermore, it allows for the
measurement of spontaneous behavior and the ability to detect
subtleties in behavior that often go unnoticed by gross cage side
observations (Figure 5).

In most cases, DBs also contribute to the promotion of
the 3Rs, such as, refinement and reduction, by serving as
markers of animal welfare, providing precision, and instilling
additional meaning to in vivo research. More opportunities
exist for refinement of methodologies and application of DBs,
and the advent of artificial intelligence and machine learning
has led to measurements of many of these parameters in an
operator-independent manner. When used correctly, a well-
validated biomarker can be utilized to guide research on disease
progression, as well as drug efficacy, safety, and toxicity.

Pertinent and timely data are required for a translational
biomarker to inform clinical and preclinical researchers in a
usable manner. To achieve and standardize such a translational
biomarker requires a great deal of time and resources in order to
establish its credibility as a measurement. There are a variety of
devices that currently address different aspects of animal welfare,
all measuring varying sets of DBs, and these are used to provide
data to inform scientists, managers, and technicians of various
aspects of in vivo health, welfare, disease status, and treatment
efficacy. In addition, there are rigorous standards in place that
govern data storage and protection, which must be taken into
account when designing an architecture that promotes the ability
to store, retrieve, and interact with large amounts of data. When
onboarding these technologies, it is important to use a vetting
process that includes pilot studies and data management plans.

In an effort to enhance the information obtained from in vivo
studies and place it within a larger context of a complete drug
development program, the impact of DBs cannot be understated
for their compatibility with artificial intelligence and machine
learning approaches to drug discovery. Creation of digital data
sets that are temporal in nature can allow for acute insight into
how animals act in the longer term, under specific circumstances
and test articles. Digital data sets also lend themselves well to AI
approaches that combine data from all aspects of preclinical and
discovery stages with clinically derived data sets to contribute to
AI modeling of disease in order to aid drug discovery without
the use of animals (Zhu, 2020). While machine learning and
advanced analytics mining large data sets are shaping the future

of research, emerging technologies, such as scalable DB systems,
will transform research and discovery.

Currently, we are faced with cultural, operational, and
scientific challenges associated with implementation of these
technologies. For these emerging technologies to be broadly
implemented, they need to demonstrate additional value to
science and business when compared to traditional assessments
of animals. We believe that our recommended solutions will
enhance technology engagement through appropriate planning
prior to onboarding, technology evaluation, and implementation.
Introducing a novel technology into traditional business
operations necessitates top-level executive support. The value
proposition, barriers, and considerations communicated here
should assist with engaging leadership to provide such support.

Within drug discovery and development, the ultimate goal
of preclinical research is to model a human disease state in
order to better predict potential drug toxicities and treatment
efficacy in the clinic. While the technologies discussed here
for monitoring preclinical DBs are still in the early stages of
development and implementation, this review is designed to
improve the understanding of the value of DBs technologies
while exploring strategies to speed their implementation within
preclinical research, so that as a scientific community we can
more rapidly get better therapeutics to patients in need.
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